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1. Introduction

The advantage of Compound Poisson
model:

(1). Recursive calculation (Panjer (1981))

(2). Combination and decomposition (Panjer and
Willmot (1992, Chapter 6) or Kaas, et al
(2001, Chapter 3)).

(3). The approximation to the individual risk mod-

els in distribution by compound Poisson mod-
els.
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Some references:
(1) Bithlmann et al (1977) illustrated why a cau- ’
tious insurer should prefer the compound Pois- 5
son model to the individual risk model in the ’
sense of stop-loss order. :
(2) Gerber (1979, Chapter 4) gave a description 9
of the choice of the Poisson parameter and _—
introduced two cases which are often used in
the later discussions. [ mere |
(3) Gerber (1984), Hipp (1985), Hipp (1986), Michel =SS Ewa|
(1987), De Pril and Dhaene (1992), Sundt L] ]
(1993), Dhaene and Sundt (1997) investigated e o
the error bounds for approximation in terms —
of distribution or stop-loss premium.
_I
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(4) Kaas, Van Heerwaarden and Goovaerts (1988b)

discussed the approximation of the aggregate
claims and the stop-loss premiums by approx-
imating the aggregate claims by the sum of
a compound Poisson random variable (r.v.)
and another r.v. determined by stop-loss or-
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der.

(5) Kuon, Radtke and Reich (1993) studied the
approximation quality when the portfolio keeps Tie Page
growing. =

The former papers are mainly focused on LB
approximation in the aggregate claims distribu- _rreesor |
tion and related functions, such as stop-loss pre- o Back
miums . Full Screen
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Motivation of our paper:

(Given the observation data from the indi-
Vldual risk model, how should one determine the

r.v.’s in the correspondmg compound Poisson
model?

The aim of this paper is to develop a method
for carrying out such an approximation.
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The outline of our paper

(1).

By minimizing the expectation of the abso-

lute deviation of compound Poisson r.v.’s from

the total loss associated with the individual
risk model, we present an optimal approxi-

mation model

. We also give a numerical method to evaluate

the approximation error.

. Finally we discuss the influence of the Poisson

parameter on the approximation error.

It 1s assumed that the individual risks are

independent. We first consider the case that
the individual risks are homogenous, then ap-
ply the homogenous results to approximate
the heterogenous risk model.
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2. Our approximation prinple

Consider a portfolio containing n homogenous
insurance risks. Let X, denote the loss associ-
ated with the ¢+-th risk, 2 =1,2,--- ,n. Assume
that X7, X9, -, X, are independent identically
distributed with common distribution F', where
the variance Var(X) is finite and 0 < F(0) <
1.The number of claims for the portfolio is de-
noted as IV,, i.e.,

N, =#{i: X; > 0,5 <n}.

The total claim amount equals

f_Sx,
=1
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An auxiliary sequence of risks
{Xni1, Xnio, -+, } is introduced, where
X1, Xo, - -+ are independent identically distributed.

Denote

= inf{: > 1 : X, NG

e — inf{i > M, 1 ;. X, > 0.
And we define a claim sequence

Yi=Xp, 121

which is a subsequence of {X;,7 > 1}.

The total claim amount 5,, = 2?21 X, can
be expressed as S,, = Zﬁ’l D)
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Note that

(1).Y;, 2 > 1 are independent and identically dis-
tributed (Li and Yang (2001));

(2). N,, is the number of claims in the portfolio
{Xla X27 A\ 7Xn}7

(3). The independence between N,, and Y; is ful-
filled (Li and Yang (2001) ).

(4). Summing over the first N, claims of the se-
quence Y;, 7 > 1, we thus obtain the total loss
Sy, associated with the portfolio { X7, - -+ , X, }.
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Our approximation methodology:

(1). It is assumed that the approximation model
has the same claim sequence as the individual
risk model.

(2). The number of claims N(f), as a Poisson
r.v., should be estimated from the observa-
tion data.

(3). The independence between N (6) and Y;, 4 >
1 is assumed.

An approximation to .5, is defined by

N ()
S* = Z X
=l
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Let Fyi(9) denote Poisson distribution with :
01
mean ¢, and Fy;,(,,4) denote binomial distribu- 3
tion with parameters (n, q) where ¢ = 1 — F(0). 5
The family of all Poisson r.v.’s, which have ;
common mean 6 and are independent of the ‘
claim sequence Y;, 4 > 1, is denoted as R(Fpi(9))-
The optimal Poisson r.v. N;(6) € R(Fup) is —I_ :
determined by the following minimizing princi- L« » ]
b e e
Page 11 of 27
E|S Z Y‘ lnf E‘Sn_S*L Go Back
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3. The existence of the optimal
Poisson r.v.

Given the risk sequence { X1, Xo,--- }, arv. U
can be defined as below:

@iConstruct r.v.’s Uy, m = 0 15NN
el e — 0,1, - - -, and X2 SINCHEREE
dependent, and U, is uniformly distributed over
(Fbin(n,q) (m A\ 1))7 Fbin(n,q) (m>] with probability
density function -

(b)Define

sz’n(n,q) (m)_Fbin(n,q)(m_l) .

7= LSy

b=
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The inverse function szg(n 2 of Fin(nq) 18
deﬁned as

The inverse function Fp_m.l( ) of Fpoi(p) is defined
as

Fpml( )( y) = inf{z : Fyoip)(2) = y}.
Then it can be proved that the r.v. U is uni-
formly distributed over [0, 1], and

el (1).

bin(n,q)
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Theorem 1 Fpml( )(U ) is a possible choice for

the optimal Poisson r.v. with mean 6. More-
over, the approximation error H,,(6) satisfies

H,(6) = E(V)E|F), (U) = Eolo (U)

poi (6

) /0 Foinn () = E SR

In this paper we choose the optimal Poisson

r.v. as
Ng(@) Fpozl( )<U)
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The two risks P and () are comonotonic if
there exist two nondecreasing real-valued func-
tions u, v and a risk Z such that

P =u(Z), =i
(see Wang, Young and Panjer(1997)).

NY(0) and N,, are both nondecreasing func-
tions of the r.v. U. Thus they are comonotonic.
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1. Some results on NY(6)

The joint distribution Fi, n(g) of (IV,,, N(6)) sat-
isfies

maX{Fbin(n,q) (x) N Fpoz( )(y) R 17 0}

< Fyn, nw(z,y)

= min{Fbin(n,q) (ZL'), Fpoi(@)(y)}

Theorem 2 The r.v. N°(f) is optimal in the

following senses:

e~ inf  E(N,— N@)F
(Na= NSO = | inf,  E(N,—N(6)

and

N,—N%#)) = f Var(N,—N(6)).
Var(Nu—N:(0) = inf  Var(N.-N(®)
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Table 1-The probability P(N,, = ¢, N2(0) = 7)
when 1 = 1000, 6 = 1, p = 0.001 G ncRE S

7 =U1 7 =N
¢ =0]0.5077] 0 U
1 = 1]0.0002|0.3679 | 3.0687E-08
5 = Z NN 0 0.1840
= 0 0
= 0 0 0
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5. Evaluating the approximation
error

Theorem 3
(a) If 8 > —nlog(1 — q), then
H,(0) = (0 — nq)EY;.
(b) If 0 < 8 < —nlog(1 — q), then
> > ) x
i=0 j=0
BN (0) = 5) + 6 — ng} EY).

n
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The Poisson parameter 6 is often chosen as
6 = nqg or 8 = —nlog(l — q) (Gerber (1979,
Chapter 4)).

Table 2-Table 4 provide some numerical val-
ues of H,,(nq) and H,(—nlog(1—q)) when £Y; =
Il

Table 2—The expected errors when n = 10

q Hn(nQ) Hn<_n 1Og(1 N Q))
0.001 [ 0.000010 0.000005
0.005 | 0.000239 0.000125
0.01 10.000911 0.000503
WO (15587 0.012933
0.1 10.038402 0.053605
0.5 10.524205 1.931472
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Table 3—The expected errors when n = 100

q Hn(”Q) Hn<_n 1Og(1 I Q>>
0.0001 19.90116E-07 5.00033E-07
0.001 | 0.000091 0.000050
0.005 | 0.001520 0.001254

0.01 0.003694 0.005034
0.05 0.044504 0. 12952
] 0.128624 0.536051
0.5 1.653039 19 3iTRiE

Table 4-The expected errors when n = 1000

Y ng) [ H,(—nlog(T—q})
0.0001 | 0.000009 0.000005
0.001 | 0.000368 0.000500
0.005 | 0.004393 0.012542
0.01 |0.012545 0.050336
0.05 |0.142642 1.293204
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6. Approximation to the total loss
and related functions

Consider the total amount of the type
> w1 9(X;), where g is a non-negative measur-
able function and ¢g(0) = 0. An approximation

for S0, g(X) is

N
P 4(Y)).
=1

The corresponding approximation error equals
N, (6)

ha(0,9) =: > 9(Xi) = ) 9(Y))

1=1
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Theorem 4 For the non-negative function g
with ¢g(0) = 0,

Eh,(0,9) = (nq — 0)Eg(Y1)

and
Eg(Y1)

EY,

One interesting fact when 8 = —nlog(1 —
q).
N Ny (6)

D 9K =D g(¥)< ) g(¥))

=1 i=1
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7. The uniqueness of the Poisson
parameter to minimizing H,(0)

If there exists a unique 6°, such that

0y NN

Bonk = 0.1,2.--- ,n— 1, denoteld NS
be the solution of equation

Ein(ng)(k) = Fooiam (k).

Then we have the following result.
Theorem 5 It holds that

(9(”_1) < (9("_2) - < 9(1) < (9(0)
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Theorem 6 There exists a unique 62 with 0 <
0 < —nlog(1 — q).

Table 5(a)-The optimal 69

n q ng | —nlog(l—q) [
2 [ 0.001 | 0.002 | 0.002001 | 0.002001
2 | 0.01 | 0.02 0.020101 | 0.020101
DRG0 [ 0.2 0.210721 0.210721
2 0.5 1 1.386294 | 0.961278
10 | 0.001 | 0.01 0.010005 | 0.010005
RN 01 | 0.1 0.100503 | 0.100503
10 | 0.10 1 1.053605 0.99907
10 | 05 5 6.931472 4.95961
100 | 0.001 | 0.1 0.100050 | 0.100050
100 | 0.01 1 1.005034 1.000
100 | 0.1 10 10.536051 9.9991
100 | 0.5 50 69.314718 49.959
1000 | 0.001 | 1 1.0005 1.000
1000 | 0.01 | 10 10.050336 10.00
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Table 5(b)-The corresponding error H,,(6")

n q Hn(ng) | Hn(—nlog(1—q)) | Ha(67)
2 [ 0.001 | 1.997E-06 1.001E-06 1.001E-06
2 | 0.01 | 0.000197 0.000101 0.000101
2 | 0.10 | 0.017462 0.010721 0.010721
2 0.5 | 0.235797 0.386294 0.226086
10 | 0.001 | 0.00001 0.000005 0.000005
10 | 0.01 | 0.000911 0.000503 0.000503
10 | 0.10 | 0.038402 0.053605 0.038161
10 | 05 | 0524205 1.931472 0.519686
100 | 0.001 | 0.000091 0.000050 0.000050
100 | 0.01 | 0.003694 0.005034 0.003694
100 | 0.1 | 0.128624 0.536051 0.128548
100 | 05 | 1.653039 19.314718 1.651654
1000 | 0.001 | 0.000368 0.000500 0.000368
1000 | 0.01 | 0.012545 0.050336 0.012545
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s. Approximation to the heteroge-
nous individual risk model

In practice, the individual risks X;,7 < n of a
portfolio are often independent, but not identi-
cally distributed.

We can divide the heterogenous porttolio
into several independent homogenous portfolios,
then approximate every homogenous portfolio
separately by our method.
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9. Conclusions

(1). We presented a new method to approximate

the individual risk model by a compound Pois-
S011 AT

(2). We discussed the calculation of the approxi-
mation error.

(3). We first focused on the homogenous individ-

ual risk models, then applied the results to
the heterogenous individual risk models.

(4). Some numerical results are given.
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